
SysRFID: generation of synthetic data
in Supply Chains

Roberto De Virgilio

Abstract Recently, due to commercial success of RFID technology, there
has been much attention to adopt such technologies in supply chain data
management. This motivates the proliferation of massive data analysis tech-
niques of a particular complexity supported of proper data management and
aggregation schemes in such systems. Nevertheless testing these frameworks
is a complex task since they are not able to easily obtain sensitive informa-
tion due to security, privacy or cost issues. This paper describes a platform
for the generation of realistic synthetic RFID data that can facilitate the
development and testing of data mining tools for supply chain management.
In particular we present SysRFID, a framework that allows to simulate the
output you would generate in a supply-chain where the RFID technology
is used. In the paper it is shown how to set the environment and the exe-
cution steps to obtain an output strictly related to required needs. Finally
experimental results demonstrates the feasibility of the system.

1 Introduction

A supply chain is a complex system composed of organizations and peo-
ple with their activities involved in transferring a product or service from a
supplier to a final customer. In such scenario, Radio-Frequency IDentifica-
tion (RFID) is a promising infrastructure-less technology interconnecting via
radio two main components: (1) transponders carrying data (tags), located
on the objects to be identified; (2) interrogators (readers) able to receive
the transmitted data. Traditional RFID applications have been focused on
replacing bar code technology in supply chain management and asset track-
ing [6]. Benefits introduced by RFID technology w.r.t. barcodes include: (i)
line-of-sight is not required between reader and tag, unlike optical scan; (ii)
larger read range (up to few meters); (iii) nearly simultaneous detection of
multiple RFID tags; (iv) higher tag storage capacity. Because of these fea-
tures, RFID provides higher levels of automation in the supply chain and
helps prevent human errors (e.g. a reader can inventory an entire shipment
in one pass while it is loaded into a warehouse, without having to scan each

Dipartimento di Informatica e Automazione
Universitá Roma Tre, Rome, Italy

e-mail: dvr@dia.uniroma3.it

1



2 Roberto De Virgilio

product). In latest years, industry is progressively rallying around few world-
wide standards for RFID technologies. In this effort a leading role is played
by the EPCglobal consortium (http://www.epcglobalinc.org.). In Supply Chain
Management (SCM) tools based on RFID technology, the practical issue of
obtaining the data sets to be integrated with these tools remains an obstacle.
The IT industry needs synthetic data generators for different applications in-
cluding regression testing (i.e. repeatedly generate the same large data set for
testing enterprise applications), secure application development (i.e. testing
on realistic but not real data) and data mining testing (i.e. generate data sets
with known characteristics to gauge whether data mining tools can discover
those characteristics). Existing synthetic data generation tools in the com-
mercial world can generate modest amounts of easily described data: they do
not scale for generating industrial-sized (i.e., terabyte) data sets.

To address this issues, in this paper we illustrate the development of Sys-
RFID a platform for the generation of large amount of realistic synthetic
RFID data efficiently. Realistic synthetic data can serve as background data
sets into which SCM tools require substantially testing and revisions of anal-
ysis in order to maximize efficient performance and accuracy that could be
very costly and hypothetical future scenarios can be overlaid.

2 State of the art

There are several commercial systems, like Turbo (http://www.turbodata.ca),
GS (http://www.GSApps.com), DTM (http://www.sqledit.com), RowGen (http:
//www.iri.com) which allow users to generate large sets of data for perfor-
mance and scalability testing of DB and DW applications. They generate
“meaningful” data, in the sense that they generate random data of appro-
priate type, using functions, built-in dictionaries, custom lists, dependen-
cies between columns, complex rules. Only GS can express time dependency
between sequential business events, which is a crucial feature to generate
“realistic” RFID data derived from a supply chain. Anyway, even with a
time dependency management feature, generating RFID data is still a time-
consuming job, for the complex dependencies which there are among object
stocks, locations, and transfer speed for different object categories. In [1] at-
tention is focused on data generation with complex statistical distribution,
but events and timestamps are not managed in the sophisticated way we need.
In [2] authors use a graph model to simplify the expression of complex inter
and intra table relationships. Some interesting ideas are in [3, 5]. The authors
provide Information Discovery and Analysis Systems(IDAS) that uses data
mining methodologies to identify significant events and relationships, but a
critical technical issue is testing their ability to provide accurate inference. An
IDAS Data and Scenario Generator (IDSG) is proposed. Knowledge about
object attributes and their relationships is represented though a semantic
graph, and the generation function for an attribute (a node) takes the val-
ues of the incoming links as input. The generation function may depend



SysRFID: generation of synthetic data in Supply Chains 3

on one or more statistical distributions over a set of discrete or continuous
values. This way to express dependencies among data can be useful to gen-
eralize the RFID data generation, but only if we describe some variables, e.
g. reading timestamps for a same object in different locations, with different
attributes (nodes). Finally, in [4] several techniques for very large databases
are presented: parallelism to speedup and scale-up the generation, concurrent
generation of indices, and special statistical distributions of data. The goal
is to facilitate the generation of a large amount of data, not the creation of
data-sets for a specific area as the RFID supply chain.

3 Preliminaries

RFID data modeling. An RFID application usually generates a stream of
RFID tuples of the form of a triple 〈E, l, t〉, where: (i) E is an EPC (Electronic
Product Code), a unique identifier stored in an RFID tag and associated with
the object carrying the tag, (ii) l represents the location where an RFID
reader has scanned an object having E as EPC, and (iii) t is the time when
the reading took place. This type of stream is usually called raw data. Other
properties of the reading event can be retrieved like the temperature, the
pressure and the degree of humidity. Typically such properties are encoded
(in case) into the EPC. A single tag may have multiple readings at the same
location, thus producing a great amount of raw data. Therefore, a simple
cleaning technique consists of converting raw data in stay records of the form:
〈E, l, tin, tout〉 where tin is the time when the object enters the location l, and
tout is the time when the object leaves the location. This basic compression
is the largely used and reduces the amount of data to be stored, although not
relevantly.

Supply Chain Modeling. The basic idea is to represent a supply chain s
by a directed acyclic graph Gs (that we call sc-graph), in which the nodes
represent the locations of s and there is an edge from a node l1 to a node
l2 if there is some movement of objects from l1 to l2 in s. The source nodes
of Gs, i.e. the nodes having no incoming edge, usually represent the place in
which the objects of the supply chain are produced, whereas the target nodes,
i.e. the nodes having no outgoing edge, are usually the final stores where the
objects sold.

4 RFID data configuration

Our system generates the output file on the basis of some parameters indi-
cated in a configuration file (i.e. serialized in XML). In such file it is possible
to configure the structure of the supply chain, to set different categories (i.e.
properties) which will refer to the stocks of items, and others general setting
supporting the simulation process.



4 Roberto De Virgilio

Items Categorization. For item we mean an object with an RFID tag. An
item can be a single object (e.g. a pencil) or a set of objects (e.g a pack of
6 pencils). In the latter case the item presents a unique EPC but we associ-
ated the number of contained objects. For instance it is reasonable to track
a stock of bottles as a single item with a unique EPC instead of consider-
ing individually different items with corresponding EPCs. In the simulation,
SysRFID focuses on tracking the flow of items into the sc-graph. The items
are characterized by categories. Each category has its own characteristics
that distinguish it from each others. Therefore in the configuration file an
element <category> will contain several attributes. For instance let’s consider
the following example

<categories>
<category

name = "PC" item_count = "1500" branch_rate = "1"
level_branch_factor = "1" handling_time = "4"
unit_time = "hh" unique_items = "true"
price = "850.0" model = "Xeon 3200" brand = "IBM" />

...
</categories>

The attribute Name is an identification name of the category. Item Count
is the amount of items in the category produced by the system. Branch Rate
is the amount of items that move together from a location to another (in
the example the items move singularly). Level Branch Factor is a correction
factor for branch rate depending on the depth of the location in the graph.
It allows to create smaller stocks as it descending into deeper levels of the
graph. Handling time is the average time of permanence of the item in a
location. Unit time is the time unit for the handling time: ss (seconds), hh
(hours) and dd (days). Unique items is a boolean value that is true if the
item is a single object, false if the item is a set of objects (i.e. a stock) that
share the same EPC. Price, Model and Brand are properties of each item
(i.e. easily extensible).

Supply Chain Configuration. As described above, we model the supply
chain as an sc-graph. At start-up we have to generate a new sc-graph. The
generation of the graph is performed in two distinct ways: fixed chain and
random chain. In the former, we define manually the list of locations (i.e.
nodes) and the list of connections between them (i.e. edges). For instance an
example follows

<chain type="fixed">
<location name = "L0" distance = "13">

<location name = "L11" distance = "20">
...

</location>
</location>

</chain>

In such file the nested composition of two locations is the parent relation-
ship. Moreover for each location we define the distance by the parent (i.e.
this parameter is needed to calculate the time of moving from one location



SysRFID: generation of synthetic data in Supply Chains 5

to another). In the random chain we have to define the number of levels, the
maximum number of nodes for each levels and the maximum output cardi-
nality of each node. The sum of cardinalities from each location at the same
level has to be less or equal to the number of nodes generated in the current
level. Then the system will generate automatically (random) the sc-graph
from that settings (i.e. locations, connections and distances). Let’s consider
the following example

<chain type="random">
<location level = "1" nodes = "1" out = "19"/>
<location level = "2" nodes = "19" out = "17"/>
...

</chain>

To our sc-graph (both in fixed and random chain) the system automati-
cally adds a fictitious location that we call super-root, that is the parent of
all sources. This location represents the big warehouse where all items are
generated and from which such items are disseminated along the chain. In the
simulation each location L has two readers Lin and Lout that record when
an item goes into a location and leaves the same location respectively. The
sensors have a read speed not infinite. Each reader is able to scan a number
of items at the same time t0 with respect to a configurable capability value
(i.e. 100 is the default value). For instance, given the capability 100 and an
incoming stock of 115 items, the reader records 100 items at time t0 and the
others 15 at time t1.

Simulation Settings. We can define some basic settings for our simulation.
Therefore in the configuration file an element <simulation> will contain sev-
eral attributes. The attribute Records defines the type of record to write into
the output: Raw data (rd) or Stay Record (sr). Workday hours describes how
many hours you consider into a working day. Gap reads is the capability of a
reader to trace items at the same time (the default value is 100 items). Off-
set is the starting timestamp of the simulation. Window is the time window
where generated readers are considered and included into the output. It is
expressed in hours and starts from the offset. Output is the format of final
output. The system can provide structured files (i.e. XML and CSV): in this
case we can have a single big file or multiple files, each one corresponding to
records into a single location. Moreover the records can be stored also into a
DBMS (i.e. actually PostgreSQL or MySQL). Finally src describes the path
to write the file or the connection string for the DBMS.

5 RFID data generation

The start-up of the simulation prepares the chain (i.e. if it is random, it will
be generated) and then generates all the items in the super-root node (i.e.
the products will start to move from the warehouse location) with respect
to the configuration file. Each location has a level, that is the depth from
the warehouse node, and each edge is labelled by the distance between the



6 Roberto De Virgilio

Fig. 1 An example of

simulation

referring locations. An object StockBucket contains all items grouped in
stocks with respect to the corresponding category. At the beginning of the
simulation, intermediate locations are empty. The stocks of items will be
splitted (according to the rate defined in the configuration file) when they
leave a location Li to enter into another location Lj . In this case we assume
that Li is parent of Lj and the level of Lj in the graph is higher than the
level of Li, that is we do not allow cycles or movements at the same level in
the graph. The simulation will finish when all items are sold out, that is all
products reach the sinks of the graph (i.e. the final shops of the supply chain).
We remind that a window of useful time (defined in the configuration file)
allows to consider only readings into a temporal range (in case), therefore
selecting only the transactions of interest. According to the configuration
file, if the type of records to generate is raw data, for each item that remains
in the same location we generate multiple readings at fixed time intervals.
Otherwise, if we have stay records, we generate only the readings when the
item enter and leaves a location.

Execution. The StockBucket is organized as a queue. Each transaction ex-
tracts the top element (i.e. a stock) from StockBucket and splits it in several
sub-stocks sti. Then each sti enters into a location Li directly connected to
the warehouse, and we register the time tin. The items of sti will remain
into Li for a time th that is the handling time of the corresponding category.
When the items of sti have to leave Li, each sti is splitted into several sub-
stocks stj registering a time tout = tin + th. Then each stj will enter into
a location Lj directly connected to Li. Of course the time t′in in Lj will be
tin + td where td is the time to cover the distance between Li and Lj . The
process goes on similarly. Each location presents a StockBucket. Therefore,
when different stocks (i.e. stocks corresponding to different categories) enter
into a location, that stocks are inserted into the local queue and processed
with respect to the order of arrival. Each stock is splitted according to the
following: (item count * branch rate) / (level branch factor * level).



SysRFID: generation of synthetic data in Supply Chains 7

For instance let us consider the example of Fig. 1. We have two categories
(i.e.x and ◦) with the same configuration as follows:

Item_count = 1000
Branch_rate = 0.1
Level_branch_factor = 1

This means that initially we have a stock of 1000 items for category. Since
the warehouse is in the level 1 in the chain, we split the stock in blocks of
100 items (i.e 1000∗0.1 / 1∗1). In the next shipment (i.e. level 2) each stock
of 100 items will be splitted in blocks of 50 items (i.e 1000 ∗ 0.1 / 1 ∗ 2). The
next blocks will contain 25 items (i.e 1000 ∗ 0.1 / 1 ∗ 3), and so on.

6 Implementation

We have implemented SysRFID, a Java tool for the generation of realistic
synthetic RFID data. The tool is according to a client-server architecture.
At client-side, we have a Web interface (as shown in Fig. 2) based on GWT1

that provides support for filling the configuration file and launching of the
generation. At serve-side, we have the core of SysRFID and the generation
of the required dataset. In this way we have a Web service where the com-
munication is asynchronous: the user launch the generation process and the
server produces the required data, store locally such data and sends a mes-
sage to the user by email containing a link to download the data on the client
side.

Fig. 2 Front-end of SysRFID: Configuration and Launch of the simulation

We are developing experimental interface to follow interactively the pro-
cess at running on the fly. We have executed several experiments to test the
performance of SysRFID. We used a dual core 2.66GHz Intel with 2 GB of

1 GWT, http://code.google.com/webtoolkit/



8 Roberto De Virgilio

main memory running on Linux. We configured a supply chain of 100 loca-
tions with 8 levels, four categories of items, totally 100000 items, branch rate
= 0.1 and level branch rate = 1 for each category, and a unique CSV file as
output format. We executed the simulation to generate different datasets of
both raw data (RD) and stay records (SR). Fig. 3 shows the resulting re-
sponse times. We evaluated the time (sec) to generate 105, 106, 107 and 108

readings. The results demonstrate the efficiency (and scalability) of SysR-
FID to generate large amount of data (e.g. 108). Of course the generation of
raw data requires a more expensive processing, since each transaction has to
manage multiple readings in each location.

Fig. 3 Efficiency of SysR-

FID

7 Conclusion

We have proposed a platform for the generation of synthetic RFID data that
can facilitate the development and testing of data mining tools for supply
chain management. We implemented such framework in SysRFID, a Java
system that allows to simulate the output you would generate in a supply-
chain where the RFID technology is used. We have shown how to set the
environment and the execution steps to obtain an output strictly related to
required needs.

References

1. N. Bruno and S. Chaudhuri. Flexible Database Generators. In VLDB, pp. 1097-1107,

2005.
2. K. Houkjaer, K. Torp and R. Wind. Simple and Realistic Data Generation. In VLDB,

pp. 1243-1246, 2006.
3. P. Lin et al. Development of a Synthetic Data Set Generator for Building and Testing

Information Discovery Systems. In ITNG, pp. 707-712, 2006.
4. J. Gray et al. Quickly generating billion-record synthetic databases. In SIGMOD, pp.

243-252, 1994.
5. D. R. Jeske et al. Generation of Synthetic Data Sets for Evaluating the Accuracy of

Knowledge Discovery Systems. In SIGKDD, pp. 756-762, 2005.
6. R. Weinstein. RFID: A Technical Overview and Its Application to the Enterprise. In

IT Professional, 07(3):2733, 2005.


