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Abstract 

The Open Science paradigm has brought the dissemination of experimental artifacts on the agenda of 

funding agencies, research institutions, and academic publishers. Managing research data is a crucial 

part of guaranteeing the reusability and reproducibility of published results. In this research, we sug-

gest a conceptualization of reproducibility based on threats, risks, and vulnerabilities identified in 

current research data management (RDM) practices. By doing so, we can describe a range of threats 

to reproducibility and pinpoint areas where current RDM practices and the scholarly infrastructure 

insufficiently address these threats. Further, we elaborate on a socio-technical approach to reproduc-

ibility in RDM by collecting evidence from researchers and published experimental reports. We show 

that the STS approach complement current IS research on RDM by offering a holistic view of repro-

ducibility challenges in RDM.  

 

Keywords: Research data management, Reproducibility, Open Science. 

1 Introduction 

Since the last decade, the reproducibility issue of scientific research becomes apparent and calls for 

attention. As reported by Laine, Goodman, Griswold, and Sox (2007), the amount of errors or misin-

terpretations of statistical analyses and reproduction failures of peer-reviewed academic work is surg-

ing (Donoho, 2010). As a consequence, a number of academic communities starts to promote a better 

scrutiny of reported results and encourage replication studies in different fields, which include also 

information systems (Laine et al., 2007; Casadevall and Fang, 2010; Sandve, Nekrutenko, Taylor and 

Hovig, 2013; Dennis and Valacich, 2014). Although reproducibility is a notoriously ill-defined term in 

the literature (Plesser, 2018; Schloss, 2018), reproducibility is defined in the Oxford English Diction-

ary as “the extent to which consistent results are obtained when an experiment is repeated” (OED 

Online., 2019). 

Moreover, reproduction (or replication) issues have also been discussed in information systems (IS) 

research in conference panels at the International Conference on Information Systems (ICIS) and the 

European Conference on Information Systems (ECIS) by Brown et al. (2016) and Olbrich et al. 

(2017). More, Dennis and Valacich, (2014) launched the AIS Transactions on Replication Research 

where IS scholars submit replication studies. In their replication, manifesto, Dennis and Valacich 

(2014) state that replication falls into three categories: exact replications, methodological replications 

and, conceptual replications. The distinction made by Dennis and Valacich made is a starting point for 

our study. We observed that what fundamentally distinguishes exact, methodological, and conceptual 

replicability mentioned in the manifesto are that these categories are variations of who (i.e., same or 

other authors), what (i.e., theory, tasks, results) , how (i.e., same or different methods) and, where (i.e., 

same or different environment) studies are repeated. These categories also apply to scientific experi-
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mentation when a holistic view on the actors, tasks, technology and structures participating in scien-

tific experiments is chosen. 

Besides, some communities of researchers took the initiative to underline the necessity of leveraging 

the scholarly infrastructure for managing and making research data findable, accessible, interoperable 

to be reusable (FAIR) by human and machine consumers (Wilkinson et al. 2016). Although the con-

cept of FAIR data reached research data management policies at international and national levels 

(European Commission, 2016), there is no joint agreement on what FAIR data is, nor what reproduci-

ble and reusable data entail. 

Thus, our work is guided by the following research question: “What reproducibility threats occurring 

in experimental systems stem from vulnerabilities in research data management practices?”. By an-

swering this question, we seek to contribute to the topics of research data management and reproduci-

ble research by (1) characterizing and identifying threats to reproducibility related to challenges en-

countered in research data management (RDM) (2) articulate reproducibility threats and risks accord-

ing to a socio-technical perspective on scientific experimentation. By doing so, this paper extends risk 

management approaches applied previously on digital preservation (Miksa et al., 2014), which is one 

of the critical tasks of RDM. 

The present paper is structured as follows: in the related work section, we make a parallel between 

experimental systems and socio-technical systems. Next, we introduce research data management ac-

tivities and concepts. In Section 4, we present the outcomes of a mixed methods (i.e., quantitative and 

qualitative) approach to acquire evidence from practitioners, institutions, funders in publishers. Final-

ly, the analysis of the evidence led to the development of an STS reproducibility framework intro-

duced in Section 5. 

2 Related Work 

2.1 Socio-Technical Perspective on Experimental Systems 

Most of the literature dedicated to scientific experimentation belongs to the area of logic, epistemolo-

gy and, statistics. Studies dedicated to scientific experimentation from a working scientist perspective 

are scarcer than the studies on the logic, validity, and methodology of scientific experimentation. 

Nonetheless, academic work using a socio-technical view on scientific experimentation emerged in 

philosophy of science (Rheinberger, 1997; Radder, 2012) and sociology of science (Latour and 

Woolgar, 1986; Stevens, 2013).  

Therefore, we first need to introduce the experimental system perspective of scientific experimentation 

developed by Radder (2012). Radder’s framework depicts scientific experiments as a system consist-

ing of theory, materialization, and results. Hans Radder defines a closed experimental system S as a 

“complex of object and equipment within a specified spatial area and during a fixed interval of time” 

(Radder, 2012). From Radder’s perspective, the instantiation of S is defined by a theoretical descrip-

tion (i.e., formal experimental process and theory) and human intervention (i.e., operationalization, the 

translation of theory to experimental procedures). First, a theoretical description (TD) delineates the 

episodes (i.e., events and activities) occurring inside S. Radder adds that some episodes have a specific 

role which is to determine the relative closure of S. In short, S is qualified as being a closed system if 

non-experimental episodes do not interfere with the episodes and results. 

Radder’s view on experimental system echoes to more generic socio-technical systems (STS). As ex-

plained earlier, experimental systems can be decomposed into the production or manipulation of (IT) 

artifacts by human intervention. According to socio-technical models (Leavitt, 1965; Ahmad, Lyytinen 

and Newman, 2011; Silver and Markus, 2013), variables composing ST systems are structure, tasks, 

technology, and actors. Experimental systems implicitly refer to similar variables. Such a correspond-
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ence enables the analysis of scientific experiments as a socio-technical system. The scholarly infra-

structure (Wallis, Rolando and Borgman, 2013), corresponds to the structure variable is STS.  Further, 

the variable tasks correspond to the operationalization of experimental designs, as tasks are defined as 

being the artifacts and rules used by the actors in an STS (Lyytinen and Newman, 2008).  

2.2 Research data management 

Academia is facing similar challenges as other sectors such as business and industry to extract valua-

ble knowledge from the increasing amount of data produced worldwide (Borgman, 2012). In experi-

mental science, where sophisticated machines produce large quantities of measures and meta-data 

about phenomena under investigation in laboratories, the consumption, processing, management, and 

diffusion of these data are notorious challenges (Borgman, 2012; Baesens et al., 2016). Nevertheless, 

besides researchers, research data management governance has responsibilities distributed among mul-

tiple stakeholders. 

Further, external laboratories, stakeholders such as academic funders are progressively governing the 

production, preservation, diffusion of scientific data created by (publicly) funded research (OECD, 

2007). As a result, researchers are facing new regulations, procedures, and technological challenges 

for managing data at each step of scientific experimentation.  

First, public research funders posit some prerequisites for managing research data generated with pub-

lic resources. For instance, grant applicants need to describe the (future) data sets, storage systems, 

and anonymization techniques, among other items, in data management plans (DMPs). Funders pursue 

societal ambitions of opening data and disseminating scientific knowledge. This ambition can be seen 

from the evolving National and European regulation, which encourages the dissemination of scientific 

artifacts in novel ways (European Commission, 2015). 

Second, publishers are critical stakeholders of the scholarly infrastructure, which is an essential struc-

ture of communication in science. In recent years, scholars have investigated the challenges of current 

scholarship practices to deal with data sharing and reproducible research (Borgman, 2008; Reilly, 

Schallier and Schrimpf, 2011). Research data management seeks to transform the scholarly infrastruc-

ture to push academic data sharing and preservation forward. RDM is a collective enterprise, for 

which efforts are shared between research funders, academic publishers, research institutions, and re-

searchers (Anonymous, 2018) to achieve reusability and reproducibility of scientific output. 

More, academic publishers explicitly integrate research artifacts produced by researchers in their edi-

torial processes. In recent years, publishers introduced data sharing, preservation, and dissemination 

guidelines and policies (Editorial, 2014). These policies are aimed at grant applicants who have to pre-

sent data management strategies early in the application process. Experimental artifacts such as da-

tasets, materials, and software must be precisely documented and, possibly, disseminated according to 

the publishers and journals’ guidelines. 

Finally, research institutions reorganize their IT services to support researchers in managing research 

data at their host institutions. Research institutions deploy institutional repositories and technology for 

managing research data to secure funding opportunities. This fact led to new managerial and support 

roles in academia appearing in academia, such as data stewards and research data managers 

(Anonymous, 2018).  

3 Mixed Methods Approach 

We follow a mixed-methods approach (Bergman, 2008); thus we apply quantitative and qualitative 

data collection techniques. We conducted semi-structured interviews to gather evidence from laborato-

ry workers and acquired open data to analyze the scholarly infrastructure. We divided the data collec-

tion and analysis into two periods. During the first period, we gathered information about the man-
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agement of scientific data by interviewing seven researchers in the bioinformatics community of one 

University in the Netherlands. There, we collected experiences of researchers in laboratories about 

data management practices. Throughout the interviews, we identified several challenges related to the 

preservation, interpretation, and dissemination of scientific artifacts. To increase the contextualization 

of our interviews, we first obtained a dataset from the administration of the University and analyzed an 

anonymized version of the data. This survey was submitted to the academic staff of our university in 

August 2014. For this survey, 829 researchers out of 3197academic staff members (source: annual 

report of the institution) answered, which is a response rate of 26%.  After removing incomplete cases, 

489 records were retained for further analysis. As we are focusing our analyses on experimental sys-

tems, we filtered the respondents on faculties that are using scientific experimentation. Removing non-

experimental disciplines further narrowed the sample to 289 respondents. 

Next, after the interviews, we screened 323 publications in the domain of Biological Science (i.e., BI-

OC category on Scopus) as the focus of our study lays on experimental work, 252 full-text publica-

tions were retained for further analysis (78%). The reason for removing 22% of the articles is that 

these articles did not report on experimental work (e.g., literature review) or did not produce research 

data with laboratory work (e.g., computer simulation using open data). Characteristics of the sample of 

publications are presented in Table 1. 

Finally, we sampled author guidelines and policies from seven publishers: Elsevier (ELS), Public Li-

brary of Science (PLOS), Cell Press (CP), American Chemical Society (ACS), Nature Publishing 

Group (NGP), Oxford University Press (OUP), eLife Sciences Publications (ELIFE). The guidelines 

can vary extensively from publisher to publisher. The rationale is that one single publisher might host 

several dozens of journals and decide that research data management matters are to be elaborated by 

each journal. Also, to cover funding agencies, we added documents from public funders: National In-

stitute of Health (NIH), National Science Foundation (NSF), European Commission (EC), and The 

Netherlands Organization for Scientific Research (NWO, in Dutch).  
 

Publisher Average 
SJR 

Average 
Number of 
Authors 

Average 
number of 
files in SI 

Average 
Distinct 
Formats 
in SI 

Percentage 
of Availabil-
ity State-
ments 

N 

Cell Press 10.7 24.3 3.5 1.61 69% 42 

Elsevier 2.3 10.3 1 0.9 5% 20 

Nature Publishing Group 14.2 31.0 4.4 1.88 94% 17 

Other 3.3 14.2 2.5 1.26 25% 119 

Public Library of Science 1.5 10.2 3.6 1.28 100% 35 

eLife Sciences Publications 7.1 11.1 2.31 0.89 31% 19 

Table 1 Characteristics of the scientific publications screened in this study. SI means Supplemental 

Information, which are files hosted on the publisher’s website. Availability statements 

are paragraphs where authors describe how to retrieve the underlying data. 

4 Results 

4.1 People, Technology and Tasks 

The first part of the results section presents the outcomes of the survey and interviews. Next, in Sec-

tion 4.2, the results of the screening of publications are shown. 
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4.1.1 Survey 

As can be seen from Table 2, RDM practices as reported by researchers to the IT services of their host 

institution reveal that reaching the ambitions set by RDM stakeholders is an ongoing effort. Overall, it 

appears from the survey results that researchers seem reluctant to comply with RDM tasks set by fun-

ders, publishers, and research institutions. Also, there seems to be only a minority of respondents who 

would accept to rely on central IT services of their institutions, at the exception of data preservation. 

Data management planning (around 20%), assistance with lab notebook systems (and assistance with 

dissemination seem to rank less high than preservation, i.e., assistance and technology to back up re-

search data on the long term. 

 

Task Statement Response N 

Report re-

producible 

results 

You are interested in digital Laboratory notebook systems Yes - 60 (20.7%) 289 

You need to record who accesses and modifies datasets No – 150 (46%) 250 

Conduct data 

management 

planning 

You are interested in expertise in writing data management 

plans  

Yes – 69 (23.9%) 289 

You created a data management plan at the start of the project Yes – 30 (10.4%) 289 

Elaborate 

preservation 

strategy 

You want assistance in organizing long term preservation of data Yes – 113 (39%) 289 

You are interested in long-term backup facilities Yes – 139 (48%) 289 

Elaborate 

dissemination 

strategy 

You plan to make data publicly available Yes – 79 (27.3%) 289 

You are interested in expertise for publishing data in a public 

repository 

Yes – 70 (24.2%) 289 

Table 2 RDM tasks related to statements answered by the respondents. We retained 289 responses 

from researchers in the faculties of science, geosciences, and veterinary medicine as 

these faculties mostly relied upon experimental systems and reported to work with ex-

perimental data. 

4.1.2 Interviews 

This section summarizes information about data management in distinct research laboratories. Seven 

researchers in the fields of biology and bioinformatics were interviewed. All interviews show different 

data preservation and dissemination practices as well as technology in place in laboratories. All inter-

viewees are labeled by their laboratory, followed by their position: Principal Investigator (PI) or Post-

doc (PD). We purposely discussed with interviewees who had proven experience in their respective 

domains, see Table 2 for an overview of the interviewees.  

For analyzing data in Computational Structural Biology, CSB/PI has an advanced computation 

infrastructure (grid computing) and maintain self-developed analysis software utilized internationally. 

CSB/PI says that assessing the quality of the data needs specific expertise. The files generated have 

different structures that are specific to the application that generated them. There is also no permanent 

storage of intermediate processing products. Data sharing is sometimes not done by transferring data 

but by giving access to where the data is located as its size would be too resource consuming. CSB/PI 

recommends to be able to use meta-data to validate the format of the files, but it is more challenging 

for the quality of the data itself. 

In Biomedical Genetics, BG/PI explains that scientific data is reused, but analysis workflows are not 

as they should be better described. There are intrinsic quality measures in the sequencing files that are 

used to assess the quality of the sequence reads. BG/PD reuses datasets from different publications and 
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merges them to answer his/her research questions. A lot of this storage is done on a shared network 

disk and processed on a local desktop. BG/PD says that there are no standards and no description of 

the data that s/he downloads, which imply to guess the meaning. BG/PD says that for this reason, it is 

needed to contact the authors who will generally provide the requested information. There is a high 

turnover of undergraduates and graduates, which means that there is sometimes no follow-up of pro-

jects. BG/PD suggests that information should be provided about available code or workflows indicat-

ing that the material works and has been verified by peers (e.g., a stamp). 

In a laboratory of Stem Cell Biology, the interviewee SCB/PD is a bioinformatician. Although the 

bioinformatics unit is shared between different groups, there is no appropriate structure or organization 

of the scientific data. Sequencing data processed by this unit is generated externally. According to 

SCB/PD, a central repository should be developed to structure this sequence data and identify its loca-

tion from the start of the data generation process. The available meta-data annotation is considered as 

weak. Also, bioinformaticians in this group are perceived as being hesitant of making their code avail-

able as its quality might be judged as not being up to standards by peers. 

 

Domain  Role Identifier Reproducibility Challenges 

Computational  
Structural Biology 

PI CSB/PI Expertise required to evaluate data quality 

Biomedical Genetics PI,  
Post-doc 

BG/PI, 
BG/PD 

Absence of standard descriptions of remote data 

Stem Cell Biology Post-doc SCB/PD No shared infrastructure between laboratories,  

Weak meta-data annotations 

Pediatric Oncology PI PO/PI Absence of data preservation strategy 

Medical Microbiology Post-doc MM/PD Moving data between (legacy) systems.  
Conservative attitude towards data sharing 

Metagenomics PI MG/PI Data is depending upon a range of (online) databases 
which might not be adequately documented 

Table 3 Overview of the interviewees' domain, role and a summary of reproducibility challenges 

In the Department of Pediatric Oncology, the respondent PO/PI took the lead of a newly created re-

search group which leaves any data management issues open at the time of the interview. A custom-

made laboratory information system (LIMS) manages micro-array data, and they seek to develop the 

same system for sequencing data. The identification of what data can be stored or dismissed is still an 

open question for which our interviewee believes that better and automated meta-data collection is crit-

ical. Regarding data reuse, one scenario is to re-purpose data that was used initially as quality controls. 

The role of the interviewee in Medical Microbiology (MM), MM/PD, is to establish a bioinformatics 

pipeline and a private repository to make these datasets findable. Keeping the data consistent is an is-

sue, as illustrated by a legacy issue occurred when laboratory members in MM moved old files without 

any identifier assigned to the new repository. According to MM/PD, MM has a conservative attitude 

regarding data sharing that might evolve with the younger generation. 

In Metagenomics, the constituents of a biological sample are unknown, and the goal of the analysis 

is to identify from which organisms the sequenced genomes are originating. A single sample might, 

therefore, be processed by calling different genomic reference databases to annotate this material. Still, 

MG/PI found that the available raw data has poor meta-data description which evaluates data quality 

and further processing laborious. MG/PI explained that data sharing is widespread in his field and that 
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data reuse is common for answering new research questions, but not for verification purposes. Inter-

mediate processing products (e.g., files) are not preserved. 

4.2 Structure: The scholarly Infrastructure 

The scholarly infrastructure has, besides researchers, stakeholders governing and managing the com-

munication of scholarly work. Funders posit requirements to researchers before and after a project, 

mostly via data management planning. Publishers act as the central governing bodies of science com-

munication. We first introduce tasks as they ought to be conducted (i.e., policy view) and the screen-

ing of publications, in Section 4.2.2, to show how things are done (i.e., “real world” view). 

4.2.1 Funders and Publishers 

The documents we consulted from funders and publishers listed in Section 3 resulted in a classifica-

tion of several RDM tasks that researchers are expected to complete for getting funding granted on the 

one side and publishing in journals at the other side. The main tasks which are reported by funders and 

publishers are shown in Table 4. We operated a division between the two main objectives of RDM: 

facilitating efficient preservation and dissemination. Besides, remaining RDM tasks support data man-

agement planning tasks, such as sending data management plans to funders and, reporting reproduci-

ble results. 

 

Task Origin of 

Policy 

Exemplary Quotes from Policies 

Report reproducible 

results 

Publisher “Authors of research articles in the life sciences, behavioral & social 

sciences and ecology, evolution & environmental sciences are required 

to provide details about elements of experimental and analytical design 

that are frequently poorly reported in a reporting summary” – NGP 

“Data, methods used in the analysis, and materials used to conduct the 

research must be clearly and precisely documented and be maximally 

available to any researcher for purposes of reproducing the results or 

replicating the procedure.” - ELIFE 

Conduct data man-

agement planning 

Funder “A data management plan that must be submitted after the proposal 

has been awarded funding. The approval of this plan is a prerequisite 

for NWO disbursing the grant.” – NWO 

Elaborate preserva-

tion strategy 

Funder “Which facilities (ICT, (secure) archive, refrigerators, or legal exper-

tise) do you expect will be needed for the storage of data during the 

research and after the research? Are these available?” - NWO 

Elaborate dissemina-

tion strategy 

Publisher, 

Funder 

“Before manuscript submission, the Authors must deposit the underly-

ing data to an appropriate public repository for public release sched-

uled no later than the publication date of the article.” – OUP 

“Such applicants are expected to contact IC program staff prior to 

submission and are also expected to include a data-sharing plan in 

their application stating how they will share the data or, if they cannot 

share the data, why not” - NIH 

Table 4 Activities extracted from policies of funding agencies and academic publishers 
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4.2.2 Publications 

 

Figure 1 Results of the screening of scientific articles published in 2017 in the category Biochemistry, 

Genetics, and Molecular Biology (BIOC). Data source exported from Scopus.  

In addition to publishers and funders’ policy, we seek to collect evidence about data sharing practices 

from screening scientific publications. In other words, we dive specifically into the tasks of reporting 

reproducible results and observe the consequences of dissemination strategies deployed by publishers. 

In Figure 1, the results of the screening are shown. The analysis illustrates shortcomings in dissemina-

tion strategies in terms of use of digital repositories (Fig. 1.A), modes of availability (B), available file 

formats (C) and, type of organizations maintaining repositories. 

In Fig. 1.A., that most of the screened articles do not refer to any deposited material. This is surprising 

considering that all sampled articles report on experimental work, thus with data acquired or produced. 

Moreover, 1.A shows that few publishers can invert this trend. Cell Press and Nature publishing 

groups host more prestigious outlets with a longer history of attempts to improve reporting and data 

availability, which might explain why these publishers are more successful at convincing authors to 

deposit data. 

In Fig. 1.B, supplemental information is preferred as an alternative to repository deposits. Supple-

mental information (SI) files are hosted on the publisher’s servers. A limitation of this mode of availa-

bility is shown in 1.C, where most of the information available in SI are not in the original formats. 

Documents (i.e., PDFs, word documents) and spreadsheets (i.e., excel workbooks) are popular file 

formats. Original file formats which might proven useful for reproduction purposes, , such as comput-

er code, are seldomly made available. 

Last, Fig. 1.D shows that authors privilege repository which are established in their communities and 

hosted by renowned organizations such as EMBL. This choice might also be guided by the RDM poli-

cies of publishers which mandate authors to deposit material in these types of repositories. 
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5 A Socio-Technical Framework of Reproducibility Threats 

In this section, we introduce relevant concepts to decipher the implications on the reproducibility of 

RDM practices reported in Section 4. The concepts are summarized in Figure 2. 

5.1 Dimensions of Reproducibility 

 
Figure 2 Reproducibility dimensions. The arrows are labelled with reproducibility risks. 

A shared understanding of the concept of reproducibility in scientific research is that reproducibility 

refers to the capability of re-enacting previous studies. When results are acquired by experimental sys-

tems, the complexity of re-enacting the objects, procedures, digital analysis, and theoretical descrip-

tions calls for a division in terms of “what is reproduced?” Radder (1992), divides types of reproduci-

bility in terms of who is reproducing and what is reproduced. Here, we opt for a slightly different divi-

sion to consider the many levels at which reproducibility issues might occur in experimental science 

where laboratory and computer work are combined. In the end, five dimensions are retained: 

First, Phenomenal and technical reproducibility apply to local laboratory work (Tabb et al., 2010). 

There are fundamental experimental techniques which ensure that results obtained from the instru-

ments are accurate and biologically sound. Therefore, biological and technical reproducibility involves 

several defense mechanisms such as producing data in du/triplicates and, comparing measurements on 

an object of study to positive and negative controls. BTR ensures that the experimental conditions at 

one location are well set. For instance, those instruments are calibrated and that observations did not 

occur by chance. 

Next, Computational reproducibility is a concern when computer software and hardware are used to 

generate, process, and analyze scientific data  (Peng, 2011; Freire, Bonnet, and Shasha, 2012). As we 

exposed earlier, computing technology is pervasive in modern scientific experimentation. CR is quite 

diverse in scope. Among many requirements for achieving CR we can name a few here: the availabil-

ity of data and code (Peng, 2011), versioning and logging (Sandve et al., 2013) and the use of literate 

programming (Knuth, 1984). In short, biological, technical, and computational reproducibility guaran-

tee the robustness of experimental operationalizations. They do not contribute to evaluating if the 

same results hold under different (experimental) conditions at different locations; this is the role of 

methodological and conceptual reproducibility (see below). Although CR is crucial for verification 
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and reuse of computational work, it is not enough for evaluating the stability of results as CR focuses 

on making computations repeatable and reusable.  

Finally, Methodological and conceptual reproducibility are forms of reproducibility that apply (al-

so) outside the boundaries of a laboratory. At that level, reproducibility is an integral part of the scien-

tific method (Andersen and Hepburn, 2016). Methodological reproducibility (MR) aims at testing the 

rigor of experimental designs or the stability of experimental outcomes at different points in time and 

space. Some authors make a clear distinction between methodological and conceptual reproducibility 

by stating that one can assess the stability of results by applying identical methods on new data or test 

a similar theoretical framework using new methods (Niederman and March, 2015). Thus, these two 

types of reproducibility are employed to challenge published theories and results. This is differing 

from the first three types, which can only say something about the rigor and robustness of data analy-

sis pipelines and laboratory procedures. 

5.2 Threats to reproducibility 

Previous work by Schloss, (2018) and Goodman et al., (2016) show that reproducibility corresponds to 

a diversity of threats that occur when an independent team wants to reproduce results. Risks are too 

often that material is not available nor preserved in optimal conditions. To increase the understanding 

of the relations between reproducibility and its related threats, risks and RDM vulnerabilities, we 

comment hereunder on the relations depicted in Figure 2. 

 

First, we can represent inferential replicability as a Structure ↔ Task relation. Inferential replica-

bility belongs to the conceptual reproducibility dimension as it relies on the scholarly infrastructure on 

the one hand and the capability to derive the (experimental) tasks that are conducted by the experi-

ments to reach similar conclusions. Conceptual Replicability differs from inferential replicability; it 

is represented as the Structure ↔ Actor since it depends on the capacity of the same or alternative 

(team of) experimenters to reach similar conclusions based on the description of experimental work. 

Last, the extent to which artifacts are made available by the authors of a study, which we labeled 

availability, is represented the relation Structure ↔ Technology. In short, these relations all rely up-

on the availability of artifacts and detailed reporting of results. 

Second, the dimension of computational reproducibility involves the results of replicability and re-

peatability. The difference between these terms can be explained by referring to the relations depicted 

in Figure 2. Results Replicability is ensured when Technology ↔ Task yields consistent results at 

each run, independently of the fact that the original or another (team of) experimenter(s) use these dig-

ital artifacts. Results replicability is facilitated by the publication of re-usable data and software in dig-

ital repositories. There is a subtle distinction with Repeatability, Technology ↔ Actor, as guarantee-

ing that technology yields repeatable results is the responsibility of the original team of experimenters.  

Third, Method Replicability is a Task ↔ Actor relation, which means that actors (i.e., experiment-

ers) can replicate studies by following the same procedures (or tasks).  Methodological reproducibility 

is only possible in case the experimental system is closed. So, closedness of the system implies that 

the two sides of the experimental system (social and technical) are consistently communicated and 

operated (hence closedness is depicted as the bridge between social and technical systems).  

Finally, a summary of the threats to reproducibility and their associated risks is shown in Table 5. The 

associated risks and vulnerabilities are compiled from the interviews and the screening of publications. 

In addition, the terminology retained for classifying reproducibility threats, risks, and vulnerabilities 

are derived from the ISO standard ISO/IEC 27000:2016, which provides a shared vocabulary for in-

formation security. Risk is defined as the “effect of uncertainty on objectives” (2.68). A vulnerability 

is a “weakness of an asset or control that can be exploited by one or more threats” (2.89). Finally, a 
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threat is the “potential cause of an unwanted incident, which may result in harm to a system or organi-

zation” (2.57). 

 

Threat Risk RDM Vulnerability Example 

External experimenters want to 
use findings from a published 
study to reach similar conclu-
sions 

No relation between report-
ed findings and underlying 
artifacts which is a risk for 
Inferential replicability 

No (or weak) repro-
ducible reporting 

Researchers in bio-
medical genetics (see 
interviews) who do 
not reuse workflows 
due to poor documen-
tation. (Source: Inter-
views.) 

External experimenters want to 
produce or acquire new evi-
dence based on published re-
sources and procedures 

Underlying artifacts are not 
disseminated in their origi-
nal formats which is a risk 
for method replicability 

No (or poor) dissemi-

nation strategy 

Researchers reluctant 

to share code due to 

their quality perceived 

as poor. (Source: In-

terviews.) 

An independent team wants to 
conduct an exact or partial 
evaluation of initial results as 
reported by the authors using 
similar (or identical) artifacts 
(e.g., software). 

Custom code, workflows 
are not available in the la-
boratory and outside the 
laboratory which poses a 
risk for result replicability 

No (or poor) dissemi-

nation strategy and 

preservation strategy 

Very few computa-

tional artifacts are 

attached to publica-

tions. (Source: 

Screening.) 

The team of experimenters 
wants to isolate experimental 
results from interferences be-
tween experimental events and 
external (uncontrolled) events. 

Software versions and 
computational workflows 
not preserved which is a 
risk for closedness as dif-
ferent software versions 
might give differing results 

No (or poor) preserva-

tion strategy 

New laboratories have 

no systems in place 

yet to trace experi-

mental processes. 

(Source: Interviews.) 

The team of experimenters 
wants to obtain similar results 
by applying the same routines 
and procedures (i.e., operation-
alization) 

Poor management of soft-
ware, data and lab note-
books are a risk for repeat-
ability 

No (or poor) preserva-

tion strategy 

Significant turn-over 

and no follow up on 

projects. (Source: 

Interviews.) 

External experimenters pro-
duce or acquire new evidence 
to evaluate existing theories. 

Experimental conditions 
not sufficiently described is 
a risk for conceptual repli-
cability 

No (or poor) repro-
ducible reporting 

A majority of artifacts 
are not deposited on 
curated repositories. 
(Source: Screening.) 

Make the evidence underlying 
a preliminary report (i.e., a 
scientific article) available to 
readers for further verification 
and reuse. 

Poor planning, versioning 
of artifacts, sharing habits, 
unforeseen privacy issues 
are a risk against the avail-
ability of artifacts 

No (or poor) research 
data planning 

Few projects consist-
ently plan data man-
agement. (Source: 
Survey.) 

Table 5 Overview of threats to reproducibility 

6 Discussion and Limitations 

We presented an approach to reproducibility, articulated in dimensions and threats, which help to cat-

egorize the different challenges of reproducibility encountered in experimental sciences. To the best of 

our knowledge, no such conceptualization of reproducibility and data management has been 

previously suggested in the literature.  

We have introduced an initial framework to answer the question: “What are reproducibility threats 

occurring in experimental systems stem from vulnerabilities in research data management?”. We have 
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seen that preservation, dissemination, planning and, reporting practices, standards in experimental sci-

ence vary per domain (see interviews), and publishers (see publication screening). We worked towards 

a framework to capture these elements and position them according to reproducibility risks, threats, 

and RDM vulnerabilities. By doing so, we depict reproducibility threats and RDM vulnerabilities by 

considering (1) researchers and other stakeholders (2) introduce challenges experienced by researcher 

(3) seek to grasp how these challenges translate on the scholarly infrastructure. To achieve that, we 

bridged a gap between experimental systems and socio-technical systems as successful reproduction of 

experimental work rely upon factors beyond technology. 

Besides, reproducibility mechanisms as depicted in the framework (Figure 2) goes beyond scientific 

experimentation in natural sciences. For instance, in IS research, design science research (DSR) is 

confronted with similar issues regarding transparent reporting and dissemination of reusable artifacts  

(Gleasure, Feller and Flaherty, 2012; Iivari, Rotvit Perlt Hansen and Haj-Bolouri, 2018). While some 

authors cast doubts on the applicability of terms such as reproducibility on a DSR paradigm 

(Baskerville and Pries-heje, 2016), the challenges experienced during artifact design and experimenta-

tion are similar from the perspective of working scientists. A dynamic view on the production of arti-

facts requires other type of sources than interviews and reports. A suggestion is therefore to include 

laboratory forensics (LF) findings into the current reproducible framework. According to Lefebvre and 

Spruit (2019) ,LF adds a perspective from practice by investigating digital files on storage systems and 

offer insights on RDM vulnerabilities going beyond what can be obtained from interviews and the 

study of publications alone.  Another suggestion is to pursue the evaluation of experimental artifact 

reusability similarly to evaluation criteria for the reuse of design principles (Iivari et al., 2018), where 

experimental artifacts and their descriptions in method sections are not only evaluated by their acces-

sibility but with a wider range of criteria such as appropriate guidance and effectiveness of dissemi-

nated experimental artifacts. 

There are several limitations to our study design and findings which we elaborate on here. The first 

limitation is that we conceptualize reproducible for experimental sciences with data covering only a 

limited sample of experimental scientists in biomedical science. Yet, we attempted to mediate this nar-

row view on experimental science in our study by adopting a more general view on scientific experi-

mentation with experimental system theory. Similarly, to the limitations of our interview data, other 

disciplines might reflect other data sharing and usage patterns that the patterns we found in biomedical 

disciplines (Gregory et al., 2018).  

7 Conclusion 

A socio-technical approach on experimental systems highlights the dynamics of scientific experimen-

tation from the point of view of working scientists (i.e., the actors) operationalizing experimental de-

sign (i.e., the tasks) using laboratory instruments and computers (i.e., technology) to communicate 

novel findings on the scholarly infrastructure (i.e., structure). We believe that understanding RDM 

practices and reproducibility challenges depends on the capability to frame experimental work in all its 

dimensions.  

However, from the survey, interviews, and screening of publications, we saw dissemination and 

preservation strategies are challenging to implement. RDM deals with the fragmentation of policies, 

ad-hoc data governance in laboratories and few constraints put on systematic and structured sharing of 

computational resources in publications. This shows that reproducibility risks need to be better under-

stood to effectively redesign the research data management and scholarly infrastructures. 
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